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1. INTRODUCTION 

FREE AND forced convection in a vertical channel with one 
or both of the walls uniformly heated has been studied exten- 
sively owing to its importance in several engineering appli- 
cations. Both symmetric as well as asymmetric heating either 
at constant temperature(s) or by uniform heat flux(es) have 
been considered [I, 21. Convection from discrete heat sources 
located on one of the walls of a vertical channel has been 
investigated only in recent years. An excellent review of these 
studies has been presented recently by Moffat and Ortega 
[2]. As this review article indicates, most of these studies 
consider protruded heat sources that are either two-dimen- 
sional (strip heating) or three-dimensional (discrete sources 
in several rows). However, there has been only a limited 
effort towards understanding the more fundamental problem 
of convective flows and heat transfer in a channel with one 
or more flush-mounted heat sources. 

Although free convection heat transfer either from a single 
or multiple flush-mounted, discrete heat source on a vertical 
plate has been studied both numerically as well as exper- 
imentally [3], the channel problem has been considered by 
only Ravine and Richards [4]. They found that the heat 
transfer from a horizontal strip on one vertical wall which is 
otherwise adiabatic, is less than that from an unshrouded 
vertical plate [S]. They reported 20-30% reduction in heat 
transfer due to shrouding. This is in contrast to the obser- 
vation made by Ortega and Moffat [6] who observed an 
increase in free convection heat transfer from an array of 
cubical elements mounted on a vertical plate when the plate 
was shrouded. The present work is a numerical study of the 
problem of free convection from a discrete heat source in a 
vertical channel originally considered by Ravine and Rich- 
ards [4]. The effects of forced flow on buoyancy-induced 
velocity and temperature fields, and the heat transfer rates 
are also examined. The computations are restricted to a 
vertical channel the width of which is equal to the height of 
the heating element, and the Prandtl number is held constant 
at 0.707. 

2. FORMULATION AND NUMERICAL 
METHOD 

Consider a two-dimensional vertical channel in which a 
flush-mounted, isoflux heat source of width (H = W), is 
located on one of the vertical walls that is otherwise 
adiabatic. The other vertical wall of the channel is maintained 
either at a constant temperature or is insulated. The flow of 
air at a temperature T,, through the bottom end of the 
channel may be caused due to the buoyancy forces or an 
externally-imposed pressure gradient, or both. The thermo- 
physical properties of air (Pr = 0.707) are assumed to be 
constant and the flow is considered to be incompressible. 
With these assumptions the governing equations may be 
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transformed into the dimensionless form of stream function- 
vorticityytemperature equations in the usual way 

V2$ = -[ (1) 

a0 a0 a0 I 

%+U~Xfz’~Y=RePr 2X2 
-(““+g) (3) 

where the Boussinesq approximation has been invoked. 
Equations (l)-(3) reduce to a set of governing equations for 
free convection when Re is taken as unity ; the velocity scale 
then reduces to v/H. 

The relevant boundary conditions for the channel walls 
may be written as 

x = 0, * = 0, ayjaxz = 0; 

20/3X= -1 O< Yi H 

afljax = 0 Y c 0 and Y > H (4) 

x= W/H, + = (I/,,,, a2*iax2 = 0, 

0=0 or aeiax=o o~Y<i (5) 

where tj,,, depends on the mode of convection. In the case 
of forced convection, $,,,., can be taken as unity while for 
free convection, $m., is obtained from the mass balance 
between the inlet and exit flow rates which requires an iter- 
ative procedure. In the case of mixed convection, $J,,,.~ is 
computed by superimposing the forced flow over the free 
convection velocity solutions. Hence, the buoyancy-induced 
flow is solved first for various Grashof numbers and then the 
computations are performed for mixed convection problems. 
To reduce the CPU time for steady-state solutions, the flow 
rate obtained from the boundary layer solutions for a vertical 
plate, is used to calculate the initial value of $,,,(Gr), The 
conditions at the inlet and exit are, however, not easy to 
specify. If the ends are considered to be sufficiently far from 
the heat source, such that the inflow and outflow can be 
assumed parallel and axial conduction can be neglected, the 
exit boundary conditions are 

u = a+jaY = 0, avjay= -a'*iax;ir = 0, aojay = 0. 

(6) 
To choose an appropriate set of boundary conditions at 

the inlet, the computations were performed for the following 
set of conditions : 

* = -xx v,,, i=oorarjay=o, 8=0 (74 
a+jay=o, i=Oorai/ar=o, B=o. Vb) 

Interestingly, the variations in Nu and IL,,,,,, were found to be 
very small. However, the streamline patterns produced by 
boundary conditions (7a) with [ = 0 looked more realistic, 
and hence that condition was adopted for the computations 
reported here. The effects of inlet boundary conditions are 
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NOMENCLATURE 

acceleration due to gravity [m SC’] 
Grashof number, (g/3q”H4)/(kvZ) 
local heat transfer coefficient, y”!( T- T,) 
[Wmm2 Key’] 
average heat transfer coefficient, q”/(T,,,,, - T,) 

[Wm 1 -2 K-1 
width of the heat source [m] 
thermal conductivity [W mm ’ K- ‘1 
average Nusselt number, 6H/k = l/Q, 
local Nusselt number, h,y/k = Y/O 
Prandtl number, v/c? 
uniform heat flux [W mm ‘1 
Reynolds number, VHlr 
dimensionless time 
temperature [K] 
dimensionless velocity in X- and y-directions 
forced flow velocity (= v/H for free 
convection) [m s- ‘1 
width of the channel [m] 

x. Y dimensionless distance in the x- and J- 
directions, .X,/H and y,‘H. 

Greek symbols 

0 

thermal diffusivity [m’ s- ‘1 
isobaric coefficient of expansion [K ‘1 

; 
Jimensionless vorticity. (&/3X- &4/d Y) 
dimensionless temperature, (T- T,)/(y”H/k) 

;: 

kinematic viscosity [m2 s- ‘1 
dimensionless stream function, u = d$/dXand 
1’ = -a*/ar. 

Subscripts 
C inlet condition 
h heated segment 
m mean value 
max largest value 

.r local value, based on y as length 
scale. 

(4 (b) 

FIG. 1. Effect of opposite wall boundary conditions, (a) isothermally cooled and (b) adiabatic, on buoyancy- 
induced flow and temperature fields in a vertical channel (Gr = 104). 
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discussed in detail by Ramanathan and Kumar [7], among 
others. 

In the present numerical scheme, equations (l)-(3) are 
discretized by employing central differences for spatial 
derivatives and forward differences for time derivatives. An 
AD? procedure is used to perform the time integration of 
vorticity and temperature equations whife the stream func- 
tion equation is solved by a Gauss-Seidel SOR point iterative 
scheme at each time step. Solutions are considered to be 
steady when the fractional changes in c and I3 between two 
time steps is less than 10s4 at each node. The iterative con- 
vergence of stream function is checked by obtaining the 
fractional difference between two successive values of 
$ < 10e3. For free convection solutions, the iterations for 
mass balance are carried out unless the change in V, is less 
than 0.1%. 

To determine an appropriate grid field, computations were 
performed for 21 x99 to 31 x 121 nodes. A 31 x 105 mesh 
with a uniform grid in the x-direction and a non-uniform 
grid in the y-direction is found to be the best compromise 
between accuracy and CPU time. The ratio of height to the 
width of the channel was taken as I1 with an adiabatic 
segment of two heater lengths on the upstream side, The 
nodes in the y-direction were distributed in such a way that 
the leading and trailing edges of the heat source fall at mid- 
points of the respective grids. Very small time steps (of the 

(4 (b) 

order of IO- “) were used to overcome the difficulty of 
numerical instability. The accuracy of the numerical results 
was first verified by performing calculations for a differ- 
entially-heated vertical cavity. To further check the reliability 
of the present rest&s, an overall energy balance was 
employed for the system. This compared the heat input with 
the energy leaving the channel, and was satisfied within 2- 
5%. 

3. RESULTS AND DISCUSSiON 

Numerical results have been obtained for free and forced 
convection for IO’ C Gr =$ IO6 and 10 < Re < 2000, re- 
spectively. Mixed convection calculations, on the other 
hand, are performed for Gr = 104, 105, and 5 x IO* and 
10 < Re < 2000. 

3.1. Flow and temperature fields 
Figure l(a) presents the streamlines and isotherms for 

free convection in a vertical channel the right-hand wall of 
whieh is isothermal. A recircuiatory motion is induced by 
the isolated heat source since the opposite wall acts as a heat 
sink. Hence, the flow of air through the channel is very weak, 
and a large fraction of heat is rejected on the cold wall. 
Indeed, the through Aow of air will further weaken if the 
heat source is located further away from the inlet. This 

- 

FIG. 2. Velocity and temperature fields for natural convection, (a) Gr = IO’, (b) Gr = 5 x IO’, and mixed 
convection, (c) Gr = 5 x 105, Re = 10, (d) Gr = 5 x lo’, Re = 100. 



576 Technical Notes 

behavior has been well demonstrated by the numerical work 
of Lai et al. on free convection from a finite wall heat source 
in a channel filled with a saturated porous medium [S]. It is 
obvious that the higher the Grashof number, the stronger 
will be the recirculating flow and the larger the extent of the 
convective cell. For these boundary conditions, the con- 
vective cell will extend much more on the upper side of the 
heat source than below it which indicates the possibility of 
how entrainment at the exit if the channel is short. 

The recirculating flow, however, vanishes if the opposite 
wall is considered to be adiabatic and the Grashof number 
is kept constant, Gr = lo4 (Figs. l(a) and (b)). The flow is 
now almost parallel and the thermal diffusion is comparable 
to convection. Also, the induced flow is much stronger than 
that observed in the previous case. Interestingly, as the Gra- 
shof number is increased, the acceleration caused by the 
buoyant forces deflects the flow toward the heat source caus- 
ing a separation from the right adiabatic wall (Figs. I(b), 
2(a) and (b)). The vertical velocity near the heat source thus 
increases, and the convective effect on the downstream side 
is enhanced. The aiding flow, however, reattaches to the 
right-hand wall far downstream (away from the heat source) 
once the (gained) heat has been sufficiently distributed over 
the entire width of the channel. The horizontal temperature 
gradient on the downstream side beyond the recirculating 
flow region, is then very weak. It is also interesting to note 
that the recirculating cell moves further away from the heat 
source as the Grashof number is increased. Clearly, the sep- 
aration and reattachment, and the flow entrainment at the 
exit, if any, are complex functions of the strength of the heat 
source, the length of the vertical channel, particularly on the 
downstream side, and the thermal boundary condition on 
the shrouding wall. 

on the buoyancy-induced flow field. Figures 2(b) and (c) 
show that the convective cell acts like a bubble and is moved 
up as the flow rate is increased which may be caused by an 
increase in either the buoyancy effects or forced flow velocity, 
or both. The recirculating flow for Gr = 5 x IO’ finally van- 
ishes at Rc z 100 (Fig. 2(d)). The heat transfer is now 
strongly convection dominated, and the horizontal tem- 
perature gradient particularly in the left-hand wall region. is 
strong even at a distance far away from the heat source. The 
isotherms in Fig. 2(d) also indicate that the presence of the 
right adiabatic wall has a minimal effect on the thermal field. 
A small deviation from the parallel Bow as displayed in Fig. 
2(d) is eliminated completely when the Reynolds number is 
about 500. A similar behavior was demonstrated by the 
streamline and isotherm patterns for other Grashof numbers. 
As can be expected, the Reynolds number required to sta- 
bilize the flow decreases with Grashof number. 

The maximum temperature. II,,,,, which occurs near the 
trailing edge of the heat source is presented in Fig. 3(a) and 
Table I for free convection. The I),,,,,, vs Gr plot is a straight 
line and can be correlated as 

((1 ) - 0.997Gr ’ “I’ rn‘,, “I< - (a 
which predicts the numerical data within 4%. Figure 3(a) 
and equation (8) show that O,,,, decreases with an increase 
in Grashof number. However, from the definition of 1) and 
Gr, it is clear that K,,,,, increases with the heat flux, and 

(T,,, - T,) cc y”” “‘. It should be noted that (I,,,,,, occurs at 
Y 4 1 only at high Grashof numbers. At low values of Gr. 
the location of H,,,,, moves away from the trailing edge and 

may be as low as X z 0.85 at Gr = 10’. This is primarily 
because of thermal diffusion being significant at low Grashof 
numbers. 

On the other hand. the forced flow has a stabilizing effect For forced convection at a low Reynolds number 

Gr 

(a) 

0)) 

FIG. 3. (a) Maximum temperature &,aX and mean Nusselt number as functions of Grashof number, and 
(b) local Nusselt number for free convection in a channel of adiabatic walls and a discrete heat source on 

one wall. 
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Table 1. Maximum temperature on the heated segment, O,.,, and its location 

Natural 
Gr convection IO 50 100 

Re 
200 500 1000 2000 

5 x IO5 0.142 0.137 0.133 - 0.121 0.100 0.080 0.061 
IO5 0.186 0.181 0.168 - 0.135 0.104 0.081 0.061 
lo4 0.260’ 0.244‘ 0.204’ - 0.144 0.106 0.082 0.061 

Forced convection 0.422 0.249” 0.198’ - - 0.083 0.062 

Location for O,,, : ” Y = 0.79 ; ’ Y z 0.87 ; ’ Y z 0.91 and the rest at Y E 0.98. 

(Re = IO), the largest temperature on the heated segment is 
about 25% higher than the mean temperature, and occurs at 
Y z 0.8 (Table 1). However, the ratio (8,,,.&JFc increases 
to 1.47 as the Reynolds number is increased to 2000. The 
location for Omrr in this case is very close to the trailing edge, 
Y z 0.98. In the case of mixed convection (&&,JMC varies 
between 1.33 and 1.48 for the computed range of Grashof 
and Reynolds numbers with the location at which 0 is largest 
being very close to the trailing edge (Y z 0.97) except when 
both Re and Gr are small. 

3.2. Free convection heat transfer 
The local heat transfer rate for free convection is reported 

in Fig. 3(b) together with the vertical plate solution of Vhet 
[9]. As can be seen, the local Nusselt number, Nu,., is about 
25% higher than that for the vertical plate when Gr = 10’. 
However, this trend reverses with an increase in buoyancy 
forces, and Nu, for Gr = 10’ decreases below Vliet’s results, 
the difference being as high as 16%. These data can be 
correlated as 

(Nu& = 0.726Gr’ ” (9) 

with the largest variations of +20%. Figure 3(a), on the 
other hand, presents the mean Nusselt number as a function 
of channel Grashof number, Gr, which can be correlated as 

(Nu,),, = 1.253&O Is2 

with +4% deviation from the computed values. 

(10) 

It is evident from equations (9) and (10) that the slope of 
Nusselt vs Grashof numbers curve is not identical to what 
has been reported for the vertical plate, 0.2064 for discrete 
heating [5] and 0.2 for the uniformly heated case [7. 9. IO]. 
This agrees with the observation of Ravine and Richards [4] 
to the extent, that the slope of the Nusselt number curve 
changes when the plate with a discrete heat source is 
shrouded. Figures 3(a) and (b) further demonstrate that the 
heat transfer rate increases due to shrouding at low Grashof 
number (Gr < 2 x 10“). In this range of Grashof number, the 
present numerical results support the theory of Ortega and 
Moffat and others [2, 61 that the combined effects of local 
buoyancy and forced convection from the induced flow 
result in higher Nusselt numbers for a discrete heat source. 
However, the enhancement is not as dramatic as these 
authors have reported which may have been caused by the 
protrusion effects in their geometry. 

It should be noted that the experimental data of Ravine 
and Richards [S] showed a reduction in heat transfer at all 
Grashof numbers, when compared to a vertical plate. We 
have, however, found that their experimental values of Nu., 
for W/H = 0.962 are about 20-30% lower than the predicted 
heat transfer rates for W/H = 1. This reduction may have 
been caused by the heat loss from unheated sections of the 
channel which would reduce the overall buoyancy forces and 
therefore the chimney effect, as also argued by Moffat and 
Ortega [2]. 

Interestingly, our numerical results at high Grashof num- 
bers support the conclusion drawn by Ravine and Richards 
that the enhancement due to the induced duct flow may not 
always compensate for the reduction in heat transfer due to 
the loss of unrestricted entrainment from the surroundings. 
It is thus concluded that the free convection heat transfer in 

FIG. 4. Nusselt numbers for mixed and forced convection. 

a discretely heated channel will exceed that for a vertical 
plate only under special circumstances determined by the 
channel width, heater protrusion, Grashof number and so 
on. 

Furthermore, if an attempt is made to predict the free 
convection Nusselt numbers by employing the forced con- 
vection correlation (equation (11)) following Moffat and 
Ortega [2], we find that the predicted values of Nu, are 
substantially lower than the computed Nusselt numbers. The 
variation of 6.6% at Gr = 10’ increases to 59% at Gr = 10’. 

3.3. Forced convection 
The computed Nusselt numbers for forced convection heat 

transfer are presented in Fig. 4, and can be correlated as 

(N&c = 1.166Re0393 (11) 

which predicts the numerical data to within +4.5%. Our 
Nusselt numbers for forced convection are generally lower 
than that predicted by the correlation for a uniformly heated 
plate with no unheated length [ll]. The variation is almost 
zero at Re = 30, but increases to about 33% at Re = 2000. 
On the other hand, we predict higher heat transfer rates at 
Re c 30. Clearly, the unheated inlet and exit sections, and 
shrouding considered in the present problem contribute to 
this difference. 

If we compare our local Nusselt numbers with those 
reported by Heaton ef al. [12] for developing Iaminar flow 
of air through an asymmetrically heated channel, we find 
that the present values are consistently lower than that for a 
channel of length H with no adiabatic inlet and exit sections. 
The difference is substantial at small Reynolds number and 
near the leading edge (42% at X = 0.028 for Re = IO), but 
diminishes as X and Re increase. 

3.4. Mixed convection 
The Nusselt numbers for mixed convection heat transfer 

are presented in Fig. 4 for Gr = 104, lo5 and 5 x 10’. Clearly, 
the effect of buoyancy forces are negligible at Re > 500 for 
all Grashof numbers (Gr < 5 x 10’). A general criterion for 
the forced convection dominant heat transfer is GrjRe’ c: 2, 
based on about 5% variation in Nusselt numbers. When 
compared with the criterion presented by Moffat and Ortega 
(21, we find that our value of Gr/Re* is on the higher side. 
The present numerical data do not yield any criterion for a 
free convection dominant regime. However, the computed 
values of mixed convection Nusselt number are surprisingly 
close (within 3%) of the predictions made by a composite 
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relation based on free and forced convection sphere, New York (I 983). 

4. CONCLUSION 

Numerical results have been reported for two-dimen- 
sional, steady free, forced and mixed convection from a Bush- 

mounted, isoflux heat source on one vertical wall of the 
channel the walls of which are otherwise adiabatic. In the 
free convection regime, the flow may separate from the 
unheated wall at high Grashof numbers, and if the channel 
is long, it may reattach at a distance far away from the heat 
source. The recirculating flow, however, disappears as the 
Reynolds number increases. The strength and extent of the 
convective cell depend strongly on Grashof and Reynolds 
numbers and show the possibility of flow entrainment at the 
exit end if the channel is short. 

The heat transfer rate is also a strong function of Grashof 
and Reynolds number. Depending on the Grashof number, 
it may be either lower or higher than the vertical plate solu- 
tions. However, in the forced convection regime, it is always 
lower than the flat plate results. The mixed convection Nus- 
selt numbers can be easily predicted by a composite relation 
based on the free and forced convection values (equation 
(14)). The present problem, however, does not fall into the 
category for which free and mixed convection Nusselt num- 
bers can be predicted from the forced convection correlations 
as proposed by Ortega and Moffat for discretely heated 
channels [2]. Also, these results neither support the theory 
that the Nusselt numbers for the present problem are always 
lower than the vertical plate solutions in the free convection 
regime, nor do they agree with the observation of several 
authors that the discrete heating always results in higher 
heat transfer rates. Finally, we expect that numerical results 
reported here will provide a basis for better understanding 
of the effects of shrouding and wall protuberances, as well as 
the influence of both the upstream and downstream adiabatic 
sections. 
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INTRODUCTION 

THE PURPOSE of this note is to report several laminar film 
condensation results that apply to a basic geometric con- 
figuration-the plane horizontal surface that faces upward. 
Reviews of the laminar film condensation field [l-3] have 
shown that solutions have been developed for a wide variety 
of wall shapes and orientations, e.g. vertical and inclined 
plates, horizontal and inclined cylinders, a sphere, and sev- 
eral types of rotating surfaces. It has been recognized also 
that the phenomenon of condensation on a horizontal flat 
surface can behave in more than one way, depending on 

whether the surface faces upward or downward. The case of 
the downward facing plate was treated by Gerstmann and 
Griffith [4], who showed that the condensate film develops a 
bumpy surface (cf. the Taylor instability) from which drop- 
lets leave the film intermittently. 

The upward facing plate is discussed by Rohsenow [l], but 
only under the assumption that the plate serves as the bottom 
surface for a vessel with adiabatic vertical walls. In that 
case, the lateral walls prevent the horizontal motion of the 
condensate, and the time-dependent growth of the film thick- 
ness is described by the one-dimensional (vertical) con- 
duction solution associated with theclassical Stefan problem. 


